
GT4 GridFTP for Developers:
The New GridFTP Server

Bill Allcock, ANL

NeSC, Edinburgh, Scotland

Jan 27-28, 2005

GlobusWORLD 2005 2

Overview

  Introduction to GridFTP
  Overview of asynchronous programming

  GridFTP Client Library

  The server Data Storage Interface (DSI)

GlobusWORLD 2005 3

What is GridFTP?

  A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

  A Protocol
  Multiple independent implementations can interoperate

  This works. Both the Condor Project at Uwis and Fermi Lab have
home grown servers that work with ours.

  Lots of people have developed clients independent of the Globus
Project.

  We also supply a reference implementation:
  Server

  Client tools (globus-url-copy)

  Development Libraries

GlobusWORLD 2005 4

GridFTP: The Protocol

  FTP protocol is defined by several IETF RFCs

  Start with most commonly used subset
  Standard FTP: get/put etc., 3rd-party transfer

  Implement standard but often unused features
  GSS binding, extended directory listing, simple restart

  Extend in various ways, while preserving
interoperability with existing servers
  Striped/parallel data channels, partial file, automatic &

manual TCP buffer setting, progress monitoring, extended
restart

GlobusWORLD 2005 5

GridFTP: The Protocol (cont)

  Existing standards
  RFC 959: File Transfer Protocol

  RFC 2228: FTP Security Extensions

  RFC 2389: Feature Negotiation for the File
Transfer Protocol

  Draft: FTP Extensions

  GridFTP: Protocol Extensions to FTP for the Grid
  Grid Forum Recommendation

  GFD.20

  http://www.ggf.org/documents/GWD-R/GFD-R.020.pdf

GlobusWORLD 2005 6

wuftpd based GridFTP
Functionality prior to GT3.2
  Security
  Reliability / Restart
  Parallel Streams
  Third Party Transfers
  Manual TCP Buffer Size
  Partial File Transfer
  Large File Support
  Data Channel Caching
  Integrated

Instrumentation
  De facto standard on the

Grid

New Functionality in 3.2
  Server Improvements

  Structured File Info
  MLST, MLSD

  checksum support
  chmod support (client)

  globus-url-copy changes
  File globbing support
  Recursive dir moves
  RFC 1738 support
  Control of restart
  Control of DC security

GlobusWORLD 2005 7

New GT4 GridFTP Implementation
  NOT based on wuftpd

  100% Globus code. No licensing issues.

  GT3.9.4 (released in Dec.) has a very solid alpha. It
will be in the GT4.0 Final scheduled for 2Q2005.

  wuftpd specific functionality, such as virtual domains,
will NOT be present

  Has IPV6 support included (EPRT, EPSV), but we have
limited environment for testing.

  Based on XIO

  Extremely modular to allow integration with a variety
of data sources (files, mass stores, etc.)

  Striping will also be present in 4.0

GlobusWORLD 2005 8

Extensible IO (XIO) system
  Provides a framework that implements a Read/

Write/Open/Close Abstraction
  Drivers are written that implement the

functionality (file, TCP, UDP, GSI, etc.)
  Different functionality is achieved by building

protocol stacks
  GridFTP drivers will allow 3rd party applications to

easily access files stored under a GridFTP server
  Other drivers could be written to allow access to

other data stores.
  Changing drivers requires minimal change to the

application code.

GlobusWORLD 2005 9

Striped Server
  Multiple nodes work together and act as a single

GridFTP server

  An underlying parallel file system allows all nodes to
see the same file system and must deliver good
performance (usually the limiting factor in transfer
speed)

  I.e., NFS does not cut it

  Each node then moves (reads or writes) only the pieces
of the file that it is responsible for.

  This allows multiple levels of parallelism, CPU, bus, NIC,
disk, etc.

  Critical if you want to achieve better than 1 Gbs
without breaking the bank

GlobusWORLD 2005 10

GlobusWORLD 2005 11

GridFTP: Caveats

  Protocol requires that the sending side do the
TCP connect (possible Firewall issues)

  Client / Server
  Currently, no simple encapsulation of the server

side functionality (need to know protocol),
therefore Peer to Peer type apps VERY difficult
  A library with this encapsulation is on our radar, but no

timeframe.

  Generally needs a pre-installed server
  Looking at a “dynamically installable” server

GlobusWORLD 2005 12

Overview

  Introduction to GridFTP

  Overview of asynchronous programming
  GridFTP Client Library

  The server Data Storage Interface (DSI)

GlobusWORLD 2005 13

Asynchronous Programming

  There are 3 basic event models
  Blocking: Code does not make progress until

event handling is finished.

  Non-blocking: Code can make progress, but
there is typically a large case or if structure.

  Asynchronous: No in-line path of execution.
Event handlers are registered and executed
as needed.

GlobusWORLD 2005 14

Asynch Programming is complicated

  There is no in-line logic that can be easily
looked at and understood.

  All state needs to be packaged up in a
structure and passed through.

  You need to be careful of race conditions.

  The event handling system is not really
“visible” so it seems like there is some
“magic” involved.

GlobusWORLD 2005 15

The callback is everything

  The term callback may be a bit confusing,
because it does not necessarily “call back”
to some other process.

  Think of it as “Now that I am done, what
should happen next?”

main()

{

 1();

 2();

 3();

}

2(cb=3) { … return()};

3(cb=done) {… return()};

main()

{

 1(cb =2);

}

GlobusWORLD 2005 16

Example Code
In main():
bytes_read = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
globus_ftp_client_register_write(&handle, buffer, bytes_read, global_offset,
 feof(fd), data_cb, (void *) fd);

In data_cb():
 if(!feof(fd)
 {
 bytes_read = fread(buffer, 1, MAX_BUFFER_SIZE, fd);
 if (ferror(fd))
 {
 printf("Read error in function data_cb; errno = %d\n", errno);
 globus_mutex_unlock(&lock);
 return;
 }
 globus_ftp_client_register_write(
 handle,
 buffer,
 bytes_read,
 global_offset,
 feof(fd),
 data_cb,
 (void *) fd);
 cb_ref_count++;
 global_offset += bytes_read;
 }

GlobusWORLD 2005 17

Globus Thread Abstraction

  With Globus libraries, you write threaded and
non-threaded code the same way.

  use globus_cond_wait and globus_cond_signal
  in a threaded build they translate to the

standard pthread calls

  in a non-threaded they translate to
globus_poll_blocking and globus_signal_poll

  This allows the same code to be built either
threaded or non-threaded.

GlobusWORLD 2005 18

Non-Threaded
  During initialization the XIO select poller callback is registered

in the callback library queue. It is always ready.

  Registering your callback places it in the same queue.

  globus_cond_wait calls globus_poll_blocking which initiates
the callback library queue processing. This will not return (in
general) until globus_cond_signal (globus_signal_poll) is
called.

  Callbacks can be ready immediately or after a wait time, they
can be one-shot or periodic.

  If nothing else is ready, XIO select poller determines how long
before the next callback will be ready and sleeps till then.

  So callbacks get queued and executed from either the
callback library or XIO select poller.

GlobusWORLD 2005 19

Threaded

  In this case, things work as expected

  globus_cond_wait calls pthread_cond_wait and
puts the main thread to sleep.

  The select loop runs in its own thread.

  globus_cond_signal calls pthread_cond_signal
and wakes up the thread waiting on the cond
(typically main).
  Note that POSIX allows the thread to wake up

aribitrarily and so the cond_wait should be
enclosed in some sort of while (!done) loop

GlobusWORLD 2005 20

Lets look at the web examples

  http://www-unix.globus.org/toolkit/docs/3.2/
developer/globus-async.html

  wget http://www-unix.mcs.anl.gov/~allcock/dev-
ex.tar

  globus-makefile-header –flavor=gcc32dbg
globus_common > makefile_header

GlobusWORLD 2005 21

Overview

  Introduction to GridFTP

  Overview of asynchronous programming

  GridFTP Client Library
  The server Data Storage Interface (DSI)

GlobusWORLD 2005 22

Writing a GridFTP Client

  Module Activation / Initialization

  Check Features

  Select Mode

  Set Attributes

  Enable any needed plug-ins

  Execute the operation

  Module Deactivation / Clean up

GlobusWORLD 2005 23

Initialization

  globus_module_activate(GLOBUS_FTP_CLI
ENT_MODULE)

  Must be called in any program that use the
client library.

  Will automatically call module_activate for
any required lower level modules (like
globus_io)

GlobusWORLD 2005 24

Checking Features

  call globus_ftp_client_features_init

  then call globus_ftp_client_feat
  this is a non-blocking call, so you will need

to wait on it to finish.

  you need only call this once

  Once globus_ftp_client_feat has returned,
globus_ftp_client_is_feature_supported
can be called as often as necessary for the
various features.

GlobusWORLD 2005 25

Attributes
  Very powerful feature and control much of

the functionality
  Two types of attributes:

  Handle Attributes: Good for an entire
session and independent of any specific
Operation

  Operation Attributes: Good for a single
operation.

  Files:
  globus_ftp_client_attr.c
  globus_i_ftp_client.h

GlobusWORLD 2005 26

Attributes (Cont)

  Handle Attributes:
  Initialize/Destroy/Copy Attribute Handle

  Connection Caching: Either all, or URL by
URL.

  Plugin Management: Add/Remove Plugins

GlobusWORLD 2005 27

Attributes (Cont)

  Operation Attributes
  Parallelism

  Striped Data Movement

  Striped File Layout

  TCP Buffer Control

  File Type

  Transfer Mode

  Authorization/Privacy/Protection

  Functions
  globus_ftp_client_operationattr_set_<attribute>(&attr, &<attribute_struct>)

  globus_ftp_client_operationattr_get_<attribute>(&attr, &<attribute_struct>)

GlobusWORLD 2005 28

Attributes (Cont)
  Example Code (structs and enums in

globus_ftp_control.h):

 globus_ftp_client_handle_t handle;
 globus_ftp_client_operationattr_t attr;
 globus_ftp_client_handleattr_t handle_attr;
 globus_size_t parallelism_level = 4;
 globus_ftp_control_parallelism_t parallelism;
 globus_ftp_control_layout_t layout;

 globus_module_activate(GLOBUS_FTP_CLIENT_MODULE);
 globus_ftp_client_handleattr_init(&handle_attr);
 globus_ftp_client_operationattr_init(&attr);
 parallelism.mode = GLOBUS_FTP_CONTROL_PARALLELISM_FIXED;
 parallelism.fixed.size = parallelism_level;
 globus_ftp_client_operationattr_set_mode(&attr,

 GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);
 globus_ftp_client_operationattr_set_parallelism(&attr, ¶llelism);
 globus_ftp_client_handle_init(&handle, &handle_attr);

GlobusWORLD 2005 29

Mode S versus Mode E

  Mode S is stream mode as defined by RFC 959.
  No advanced features accept simple restart

  Mode E enables advanced functionality
  Adds 64 bit offset and length fields to the header.

  This allows discontiguous, out-of-order transmission
and along with the SPAS and SPOR commands, enable
parallelism and striping.

  Command:
globus_ftp_client_operationattr_set_mode(&attr, GLOBUS_FTP_CONTROL_MODE_EXTENDED_BLOCK);

GlobusWORLD 2005 30

Plug-Ins
  Interface to one or more plug-ins:

  Callouts for all interesting protocol events
  Allows monitoring of performance and failure

  Callins to restart a transfer
  Can build custom restart logic

  Included plug-ins:
  Debug: Writes event log
  Restart: Parameterized automatic restart

  Retry N times, with a certain delay between each try
  Give up after some amount of time

  Performance: Real time performance data

GlobusWORLD 2005 31

Plug-Ins (Cont.)
  Coding:

  globus_ftp_client_plugin_t *plugin;
  globus_ftp_client_plugin_set_<type>_func

  Macro to make loading the struct easier

  globus_ftp_client_handleattr_add_plugin(att
r, plugin)

  Files:
  globus_ftp_client_plugin.h
  globus_ftp_client.h
  globus_ftp_client_plugin.c
  Also some internal .h files

GlobusWORLD 2005 32

Plug-Ins (Cont.)
  A plugin is created by defining a

globus_ftp_client_plugin_t which contains the
function pointers and plugin-specific data needed for
the plugin's operation. It is recommended that a
plugin define a a globus_module_descriptor_t and
plugin initialization functions, to ensure that the
plugin is properly initialized.

  Every plugin must define copy and destroy
functions. The copy function is called when the plugin
is added to an attribute set or a handle is initialized
with an attribute set containing the plugin. The
destroy function is called when the handle or
attribute set is destroyed.

GlobusWORLD 2005 33

Plug-Ins (Cont.)

  Essentially filling in a structure of function
pointers:
  Operations (Put, Get, Mkdir, etc)

  Events (command, response, fault, etc)

  Called only if both the operation and event
have functions defined

  Filtered based on command_mask

GlobusWORLD 2005 34

High Level Calls

  globus_ftp_client_put/get/3rd Party
  Function signature:
 globus_result_t globus_ftp_client_get

(globus_ftp_client_handle_t *handle,
 const char *url,

globus_ftp_client_operationattr_t *attr,
globus_ftp_client_restart_marker_t *restart,
globus_ftp_client_complete_callback_t
complete_callback,

 void *callback_arg)
Example: globus_ftp_client_put_test.c

GlobusWORLD 2005 35

Parallel Put/Get

  Parallelism is hidden. You are not required
to do anything other than set the
attributes, though you may want to for
performance reasons.

  Doc needs to be updated. Does not have
enums or structures. Look in
globus_ftp_control.h

GlobusWORLD 2005 36

Deactivate / Cleanup

  Free any memory that *you* allocated

  Call the necessary destroy and deactivate
functions:

globus_ftp_client_handleattr_destroy(&handle_attr);
globus_ftp_client_operationattr_destroy(&operation_attr);
globus_ftp_client_handle_destroy(&handle);
globus_module_deactivate(GLOBUS_FTP_CLIENT_MODULE);

GlobusWORLD 2005 37

  http://www.globus.org/developer/api-
reference.html

GlobusWORLD 2005 38

Overview

  Introduction to GridFTP

  Overview of asynchronous programming

  GridFTP Client Library

  The server Data Storage Interface (DSI)

GlobusWORLD 2005 39

New Server Architecture
  GridFTP (and normal FTP) use (at least) two

separate socket connections:
  A control channel for carrying the commands

and responses

  A Data Channel for actually moving the data

  Control Channel and Data Channel can be
(optionally) completely separate processes.

  A single Control Channel can have multiple
data channels behind it.
  This is how a striped server works.

  In the future we would like to have a load
balancing proxy server work with this.

GlobusWORLD 2005 40

New Server Architecture
  Data Transport Process (Data Channel) is

architecturally, 3 distinct pieces:
  The protocol handler. This part talks to the network and

understands the data channel protocol

  The Data Storage Interface (DSI). A well defined API that
may be re-implemented to access things other than POSIX
filesystems

  ERET/ESTO processing. Ability to manipulate the data
prior to transmission.
  currently handled via the DSI

  In V4.2 we to support XIO drivers as modules and chaining

  Working with several groups to on custom DSIs
  LANL / IBM for HPSS

  UWis / Condor for NeST

  SDSC for SRB

GlobusWORLD 2005 41

Possible Configurations

Control
Data

Typical Installation

Control

Data

Separate Processes

Control

Striped Server

Data

Striped Server (future)

Control

Data

GlobusWORLD 2005 42

Third Party Transfer

RFT Service

RFT Client

SOAP
Messages

Notifications
(Optional)

Data
Channel

Protocol
Interpreter

Master
DSI

Data
Channel

Slave
DSI

IPC
Receiver

IPC Link

Master
DSI

Protocol
Interpreter

Data
Channel

IPC
Receiver

Slave
DSI

Data
Channel

IPC Link

GlobusWORLD 2005 43

The Data Storage Interface (DSI)

  Unoriginally enough, it provides an interface to
data storage systems.

  Typically, this data storage system is a file
system accessible via the standard POSIX API,
and we provide a driver for that purpose.

  However, there are many other storage
systems that it might be useful to access data
from, for instance HPSS, SRB, a database,
non-standard file systems, etc..

GlobusWORLD 2005 44

The Data Storage Interface (DSI)
  Conceptually, the DSI is very simple.

  There are a few required functions (init,
destroy)

  Most of the interface is optional, and you can
only implement what is needed for your
particular application.

  There are a set of API functions provided that
allow the DSI to interact with the server itself.

  Note that the DSI could be given significant
functionality, such as caching, proxy, backend
allocation, etc..

GlobusWORLD 2005 45

Developer Implemented Functions
  Below is the structure used to hold the

pointers to your functions.
  This can be found in <install>/source-

trees/gridftp/server/src

typedef struct globus_gfs_storage_iface_s

{

 int descriptor;

 /* session initiating functions */

 globus_gfs_storage_init_t init_func;

 globus_gfs_storage_destroy_t destroy_func;

 /* transfer functions */

 globus_gfs_storage_transfer_t list_func;

 globus_gfs_storage_transfer_t send_func;

 globus_gfs_storage_transfer_t recv_func;

 globus_gfs_storage_trev_t trev_func;

 /* data conn funcs */

 globus_gfs_storage_data_t active_func;

 globus_gfs_storage_data_t passive_func;

 globus_gfs_storage_data_destroy_t data_destroy_func;

 globus_gfs_storage_command_t command_func;

 globus_gfs_storage_stat_t stat_func;

 globus_gfs_storage_set_cred_t set_cred_func;

 globus_gfs_storage_buffer_send_t buffer_send_func;

} globus_gfs_storage_iface_t;

GlobusWORLD 2005 46

Master vs. Slave DSI

  If you wish to support striping, you will need two
DSIs

  The Master DSI will be in the PI or front end. It
must implement all functions (that you want to
support).

  Usually, this is relatively trivial and involves minor
processing and then “passing” the command over
the IPC channel to the slave DSI

  Any functions not implemented will be handled by
the server if possible (non-filesystem, active, list)

  All DSI’s must implement the init_func and
destroy_func functions.

GlobusWORLD 2005 47

Slave Functions
  The slave DSI does the real work. It typically

implements the following functions:
  send_func: This function is used to send data

from the DSI to the server (get or RETR)

  recv_func: This function is used to receive data
from the server (put or STOR)

  stat_func: This function performs a unix stat,
i.e. it returns file info. Used by the list function

  command_func: This function handles simple
(succeed/fail or single line response) file system
operations such as mkdir, site chmod, etc.

GlobusWORLD 2005 48

Slave Functions (cont)

  If you implement active/passive (you
normally shouldn’t) you will need to
implement data_destroy to free the data
channel memory.

  The set_cred function normally does not
need to be implemented.

GlobusWORLD 2005 49

Additional Master Functions
  As noted before, the master should (must?)

implement all functions. Besides the sender
functions, these include:
  active_func: This is for when the DSI will be

doing a TCP connect.
  The master figures out who gets what IP/port info and then

passes it through.
  The slave should not need to implement this. The server

can handle this for you.

  passive_func: The counter-part to the
active_func when the DSI will be the listener

  list_func: This should be passed through and
will handle LIST, NLST, MLST, etc..

GlobusWORLD 2005 50

Additional Master Functions
  There are also some utility functions the

master should (must?) implement:
  data_destroy_func: Frees the memory

associated with the data channel. This should
be a simple pass through, unless you implement
your own active/passive functions.

  trev_func: This handles the restart and
performance markers, but should be a simple
pass through

  If you choose not to implement any of these
functions you need to have a good reason.

GlobusWORLD 2005 51

IPC Calls
  These calls are how the master DSI “passes”

the call to the slave DSI
  The IPC calls are basically the same as the DSI

calls.
  globus_gfs_ipc_iface_stat_t stat_func;
  globus_gfs_storage_stat_t stat_func;

  These calls implement an internal, binary
protocol to transfer the necessary structures
between the front end and the back end.

  The IPC receiver receives the message and
then invokes the sender DSI. The sender DSI
does not know, nor does it need to know,
whether it is local or remote.

GlobusWORLD 2005 52

Helper Functions that should be used
  When implementing the DSI functions, the

following helper functions should be called:
  <function>_finished: This tells the server that a

specific function (such as recv) has completed
  all functions have finished functions. There is also a generic

finished. The send and recv also have start calls.

  register[read|write]: This is how file data is
transferred between the DSI and the server.

  bytes_written: This should be called anytime the
DSI successfully completes a write to its own
storage system. This allows performance and
restart markers to be generated

GlobusWORLD 2005 53

Helper Functions that should be used

  get_concurrency: Tells you the number of
outstanding reads or writes you should have
based on the parallelism.

  get_blocksize: This indicates the buffer size that
you should exchange with the server via the
register_[read|write].

  get_[read|write]_range: This tells the DSI which
data it should be sending.
  This handles striping (this DSI only needs to send a portion of

the file), restart (including “holey” transfers), and partial files.

  read should be called repeatedly until it returns zero.

  write is only a hint (you have to write where the offset tells
you) and should only be called once.

